Abstract
Abstract Synchronous motor driven centrifugal compressors are widely used in the oil and gas industry. In evaluating the optimum selection of synchronous motor drivers for centrifugal compressors, it is important to understand the factors influencing a proper match for a centrifugal compressor and its synchronous motor driver. The buyer should specify process requirements and define possible operating scenarios for the entire life of the motor driven centrifugal compressor train. The compressor designer will use the buyer-specified process conditions to model the aerothermodynamic behavior of the compressor and characterize its performance. Performance, controllability, starting capabilities as well as the optimum power margin required for a future-oriented design must also be considered. This paper reviews the criteria for evaluating the optimal combination of a centrifugal compressor and its synchronous motor driver as an integral package. It also addresses API standard requirements on synchronous motor driven centrifugal compressors. Design considerations for optimal selection and proper sizing of compressor drivers include large starting torque requirements to enable compressor start from settle-out conditions and to prevent flaring are addressed. Start-up capabilities of the motor driver can significantly impact the reliability and operability of the compressor train. API 617 on centrifugal compressors refers to API 546 for synchronous motor drivers. In this paper, requirements of API 617 and 546 are reviewed and several important design and sizing requirements are presented. In the effort to optimize plant design, and maintain the performance requirements, the paper discusses optimization options, such as direct on-line starting method to explore the motor rating limits, and the use of synchronous motors for power factor correction to eliminate or reduce the need for reactive power compensation by capacitor banks. This paper presents a novel approach to show constant reactive power lines on traditional V curves. It also complements capability curves of synchronous motors with lines of constant efficiency. The paper discusses variable frequency drive options currently used for synchronous motors in compressor applications. The paper addresses the available variable frequency drive types, their impact on the electrical grid, and motor design considerations with a view to summarizing factors important to the selection of variable frequency drives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.