Abstract

We consider the problem of finding an instance of a string-pattern s in a given string under compression by straight line programs (SLP). The variables of the string pattern can be instantiated by single characters. This is a generalisation of the fully compressed pattern match, which is the task of finding a compressed string in another compressed string, which is known to have a polynomial time algorithm. We mainly investigate patterns s that are linear in the variables, i.e. variables occur at most once in s, also known as partial words. We show that fully compressed pattern matching with linear patterns can be performed in polynomial time. A polynomial-sized representation of all matches and all substitutions is also computed. Also, a related algorithm is given that computes all periods of a compressed linear pattern in polynomial time. A technical key result on the structure of partial words shows that an overlap of h+2 copies of a partial word w with at most h holes implies that w is strongly periodic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.