Abstract

Ultrabroadband three-wave-mixing is analyzed using the concept of pulse-front-tilt, which is achieved by means of angular dispersion. The results show exactly matching of both group-velocity and pulse-front is the important criterion for constructing an ultrabroadband TWM. A theoretical model is developed, in which the group velocities, noncollinear angles, spatial walk-off angles, linear angular spectral dispersion coefficients and pulse-front tilted angles are suitably linked to each other. Expressions for finding ideal phase matching angle, noncollinear angle and linear angular spectral dispersion coefficient are obtained. Specific numerical results are presented for crystals BBO and LBO with type-I noncollinear angularly dispersed geometry. The numerical simulations verify that our model is valid for designing a practicable ultrabroadband parametric process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call