Abstract

For a sparsely observed acoustic field, Gaussian processes can predict a densely sampled field on the array. The prediction quality depends on the choice of a kernel and a set of hyperparameters. Gaussian processes are applied to source localization in the ocean in combination with matched-field processing. Compared to conventional processing, the denser sampling of the predicted field across the array reduces the ambiguity function sidelobes. As the noise level increases, the Gaussian process-based processor has a distinctly higher probability of correct localization than conventional processing, due to both denoising and denser field prediction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.