Abstract
Source localization is a basic problem in underwater acoustics. Many solving approaches have been developed, and the matched-field processing (MFP) is one of the mostly-studied. However, MFP is sensitive to the mismatch problem and performs well only when the knowledge of ocean environment is accurate. Machine learning learns directly from the observation and can be designed to learn a generic model suitable for different scenarios. In this paper, source localization is viewed as a machine learning problem and a matched-field source localization model is learned by training a sparsely-coded feed-forward neural network with mixed environment models and data. Sparsely-coded network can prevent the model from over-learning. Results on SWellEx-96 experiment show that the learned model achieves good positioning performance in source range estimation for varying sound-speed profiles (SSP). Compared with Bartlett matched-field processing, machine learning model is more robust and thus has potential advantages in underwater source localization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.