Abstract

Protein abundance correlates only moderately with mRNA levels, and are modulated post-transcriptionally by a network of regulators including ribosomes, RNA-binding proteins (RBPs), and the proteasome. Here, we identified Ma ster P rotein abundance R egulators (MaPRs) across ten cancer types by devising a new computational pipeline that jointly analyzed transcriptomes and proteomes from 1,305 tumor samples. We identified 232 to 1,394 MaPRs per cancer type, mediating up to 79% of post- transcriptional regulatory networks. MaPRs exhibit high network connectivity, strong genetic dependency in cancer cells, and significant enrichment for RBPs. Combining tumor up-regulation, druggability, and target network analyses identified cancer-specific vulnerabilities. MaPRs predict tumor proteomic subtypes more accurately than other proteins. Finally, significant portions of RBP MaPR-target relationships were validated by experimental evidence from eCLIP binding and knockdown assays. Our findings uncover central MaPRs that govern post-transcriptional networks, highlighting diverse processes underlying human proteome regulation and identifying key regulators in cancer biology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.