Abstract

As a first application of the shift operators method we derive master formulas for the two- and three-center one-electron integrals involving Gaussians, Slater, and Bessel basis functions. All these formulas have a common structure consisting in linear combinations of polynomials of differences of nuclear coordinates. Whereas the polynomials are independent of the type (GTO, BTO, or STO) of basis functions, the coefficients depend on both the class of integral (overlap, kinetic energy, nuclear attraction) and the type of basis functions. We present the general expression of polynomials and coefficients as well as the recurrence relations for both the polynomials and the whole integrals. Finally, we remark on the formal and computational advantages of this approach. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 78: 83–93, 2000

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.