Abstract

A new statistical classifier for handwritten character recognition is presented. After a standard preprocessing phase for image binarization and normalization, a distance transform is applied to the normalized image, converting a black and white (B/W) into a gray scale picture. The latter is used as feature space for a k -Nearest-Neighbor classifier, based on a dissimilarity measure which generalizes the use of the distance transform itself. The classifier has been implemented on a massively-parallel processor, Connection Machine CM-2. Classification results of digits extracted from the U.S. Post Office ZIP code database and the upper-case letters of the NIST Test Data 1 are provided. The system has an accuracy of 96.73% on the digits and 94.51% on the upper-case letters when no rejection is allowed and an accuracy of 98.96%, on the digits and 98.72% on the upper-case letters at 1% error rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.