Abstract

In this paper is presented the use of the discrete-time cellular neural network (DTCNN) paradigm to develop algorithms devised for general-purpose massively parallel processing (MPP) systems. This paradigm is defined in discrete N-dimensional spaces (lattices) and is characterized by the locality of the direct information transmission between the space points (cells) and by continuous values of data and parameters; the DTCNN paradigm is thus able to express most of the typical MPP applications. A general version of a DTCNN has been implemented and optimized for three MPP architectures, namely the Connection Machines CM-2 and CM-5 and the Cray T3D. The comparison between the three machine performances with those achieved by a standard SPARC-20 workstation shows that, particularly with large lattices, the speed-up allowed in the computational times is significant and the range of solvable problem sizes is widely extended.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.