Abstract

Massively parallel reporter assay (MPRA) is a high-throughput analysis method that can simultaneously investigate the activity of thousands of regulatory elements in the genome. MPRA introduces a uniquely identified barcode on a conventional luciferase reporter gene vector, sequences the DNA barcode before transfection and the mRNA barcode after transfection by next-generation sequencing technology, and uses the ratio of mRNA and DNA barcode reads to analyze the activity of cis-regulatory elements. Since MPRA was proposed, it has been widely used in the identification of genomic cis-regulatory elements and functional variants, the effect of post-transcriptional regulation on phenotypes and so on. In this review, we summarize the development history, basic principles, experimental procedures and statistical analysis methods of MPRA, and its applications in post-transcriptional regulation and cis-regulatory elements. It also provides prospects for its development and useful references for researchers in related fields to understand and apply MPRA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call