Abstract
Spatial multiplexing using Massive MIMO has been shown to have very promising properties, including large gains in spectral efficiency and several orders of magnitude lower transmit power, as compared to today's access schemes. The properties of massive MIMO have been studied mostly for theoretical channels with independent and identically distributed (i.i.d.) complex Gaussian coefficients. To efficiently evaluate massive MIMO in more realistic scenarios, we need channel models that capture important massive MIMO channel characteristics. We pursue this by analyzing measurement data from a measurement campaign in the 2.6 GHz frequency range, using a physically large array with 128 elements. Key propagation characteristics are identified from the measurements. We use the cluster-based COST 2100 MIMO channel model as a basis, and propose an extension to include those important propagation properties for massive MIMO. Statistical models of the total number of clusters, their visibility regions and visibility gains at the base station side are found based on the measurement data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.