Abstract

In order to understand how many antennas are needed in a multiuser massive MIMO system, theoretical derivation and channel measurements are conducted; the effect of a finite number of base station (BS) antennas on the performance capability of Zero-forcing (ZF) precoding in a rich scattering channel is quantified. Through the theoretical analysis, the needed number of the transmit antennas for ZF precoder to achieve a certain percentage of the broadcast channel (BC) capacity will monotonically decrease with the increase of the transmit signal-to-noise ratio (SNR), and the lower bound of the needed transmit antennas is derived with a simple expression. Then the theoretical derivation is verified by simulation results, and the transmission performance is evaluated by channel measurements in urban microcell (UMi) scenario with frequencies of 3.5 and 6 GHz. From the measurement results, the ZF capability can be enhanced by improving the SNR and enlarging the antenna array spacing when the massive MIMO channel does not under a favorable propagation condition. Furthermore, because of the lower spatial correlation, the performance of ZF precoding at 6 GHz is closer to the theoretical derivation than 3.5 GHz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.