Abstract
DNA methylation in plants plays a role in transposon silencing, genome stability and gene expression regulation. Environmental factors alter the methylation pattern of DNA and recently nutrient stresses, such as phosphate starvation, were shown to alter DNA methylation. Furthermore, DNA methylation had been frequently addressed in plants with notably small genomes that are poor in transposons. Here, we compare part of the DNA methylome of nitrogen- and phosphorus-deficient maize roots by reduced representation sequencing and analyze their relationship with gene expression under prolonged stresses. Tremendous DNA methylation loss was encountered in maize under nitrogen-deficiency, but much less with phosphorus-deficiency. This occurred only in the symmetrical cytosine context, predominantly in CG context, but also in the CHG context. In contrast to other plants, differential methylation in the more flexible CHH context was essentially absent. In both deficiency conditions a similar number of differentially expressed genes were found and differentially methylated regions (DMRs) were predominantly identified in transposable elements (TEs). A minor fraction of such DMRs was associated with altered gene expression of nearby genes. Interestingly, although these TEs were mostly hypomethylated, they were associated with both up- or down regulated gene expression. Our results suggest a different methylome regulation in maize compared to rice and Arabidopsis upon nutrient deficiencies and point to highly nutrient- and species-specific dynamics of genomic DNA methylation.Description of Significance: DNA methylation suppresses transposons in plant genomes, but was also associated with other genome protective functions and gene expression regulation. Recently it was shown that DNA methylation dynamically responds to several abiotic and biotic environmental factors, but to a large instance, DNA methylation is also heritable. DNA methylation changes have also been reported under phosphorus starvation in rice and Arabidopsis, but its relation with other nutrients and its importance for individual gene expression remains unclear. Here, DNA methylation changes upon the deficiency of two major essential nutrients, nitrogen and phosphorus, were studied in parallel with gene expression responses in maize roots. We show context, nutrient- and species-specific patterns in the methylome, as well as its relation with the nutrient-deficiency transcriptome. While cases of differentially methylated regions in the vicinity of differentially expressed genes were apparent, both positive and negative roles on the gene expression were identified, irrespective of the context.
Highlights
Plants contain profound adaptation strategies that influence many aspects of growth, development and metabolism, when the two essential macronutrients nitrogen and phosphorus are insufficiently available
While control shoots contained 4.1% N and 0.7% P in their dry mass, -N plants contained only 1.79% N and 0.5% P (Figure 1B). -P plants contained 3.17% N and 0.11% P, confirming the specific, severe systemic nutrient deficiencies in the samples that are typically seen below 3% for N and below 0.25% for P in young maize (Sahrawat, 2014)
Though there are still a lot of open questions and things to learn about the role of DNA methylation in plants, it more and more crystallizes that the way DNA methylation adapts in different plants is strongly dependent on which plant species is concerned
Summary
Plants contain profound adaptation strategies that influence many aspects of growth, development and metabolism, when the two essential macronutrients nitrogen and phosphorus are insufficiently available. Both nutrients are important components of DNA and RNA. Genome wide DNA methylation changes are associated with the adaptation to phosphorus starvation in Arabidopsis and rice (Secco et al, 2015; Yong-Villalobos et al, 2015). DNA methylation is potentially involved in the plasticity for adaptation to environmental changes by regulating genome accessibility. DNA methylation impacts on processes such as pathogen response, genome stability, heterosis, imprinting, regulation of transposable elements (TEs) and gene expression (Vidalis et al, 2016)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.