Abstract

We consider the possibility that the massive graviton is a viable candidate of dark matter in the context of bimetric gravity. We first derive the energy-momentum tensor of the massive graviton and show that it indeed behaves as that of dark matter fluid. We then discuss a production mechanism and the present abundance of massive gravitons as dark matter. Since the metric to which ordinary matter fields couple is a linear combination of the two mass eigenstates of bigravity, production of massive gravitons, i.e. the dark matter particles, is inevitably accompanied by generation of massless gravitons, i.e. the gravitational waves. Therefore, in this scenario some information about dark matter in our universe is encoded in gravitational waves. For instance, if LIGO detects gravitational waves generated by the preheating after inflation then the massive graviton with the mass of $\sim 0.01$ GeV is a candidate of the dark matter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.