Abstract

Quantum chemical studies of the formation and growth of atmospheric molecular clusters are important for understanding aerosol particle formation. However, the search for the lowest free-energy cluster configuration is extremely time consuming. This makes high-level benchmark data sets extremely valuable in the quest for the global minimum as it allows the identification of cost-efficient computational methodologies, as well as the development of high-level machine learning (ML) models. Herein, we present a highly versatile quantum chemical data set comprising a total of 11 749 (acid)1-2(base)1-2 cluster configurations, containing up to 44 atoms. Utilizing the LUMI supercomputer, we calculated highly accurate PNO-CCSD(F12*)(T)/cc-pVDZ-F12 binding energies of the full set of cluster configurations leading to an unprecedented data set both in regard to sheer size and with respect to the level of theory. We employ the constructed benchmark set to assess the performance of various semiempirical and density functional theory methods. In particular, we find that the r2-SCAN-3c method shows excellent performance across the data set related to both accuracy and CPU time, making it a promising method to employ during cluster configurational sampling. Furthermore, applying the data sets, we construct ML models based on Δ-learning and provide recommendations for future application of ML in cluster configurational sampling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.