Abstract

In this article, the effects of liquid properties and operating conditions on gas–liquid mass transfer under ultrasound irradiation and mechanical stirring were studied and compared. Response surface methodology (RSM) was utilized for the design of experiments and evaluation of the influence of operating parameters. The maximum value of volumetric mass transfer coefficient (kLa) was found to be 0.0714 s−1 when the ultrasonic horn was located horizontally just above the gas sparger in the tank. Ultrasonic power and the position of ultrasonic horn were found to be the most significant parameters that influence kLa. Also, three empirical correlations were developed to estimate kLa considering liquid viscosity as one of the main parameters, and their estimations were compared to those estimated using existing correlations in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.