Abstract

The influence of impeller structure on the mass transfer characteristics was studied with the steady-state method for gas-liquid volumetric mass transfer coefficient (k L a). The single-impeller configurations included eight impeller types (three radial flow impellers, four axial flow impellers and one mixed flow impeller), and the doubleimpeller included three configurations (RT+RT, RT+WH D , WH D +WH D ). For single-impeller, the gas-liquid mass transfer rates of radial flow impellers were better than those of axial flow impellers under the same rotation speed and gas flow rate. The mass transfer performance (defined as the volumetric mass transfer coefficient per unit power input) of radial flow impellers were also better than that of axial flow impellers. With the same kLa value under a certain gas flow rate, the local bubble size distribution between radial flow impeller and axial flow impeller was similar. As for double impellers, RT+RT provided the highest mass transfer rate under certain rotation speed and gas flow rate, while WH D +WH D gave the highest values of gas-liquid mass transfer coefficient with the same power consumption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call