Abstract
As one of the most effective methods for remediating VOCs contaminated site, air sparging technology is not suitable to low-permeability soil due to the poor remediation efficiency. To solve this problem, an improved approach aiming for mass transfer enhancement by establishing pressure gradient in soil is proposed in this study, and the remediation efficiency, removal mechanism, as well as the mass transfer characteristic are comprehensively investigated. Test results showed that, using the proposed approach significantly reduced the time for exhaust air contaminants reaching concentration equilibrium, and improved the contaminant removal zone and extent in soil, which were especially strengthened at sparging pressures higher than 40 kPa. The total contaminant removal rate was improved by introducing the proposed approach, with a maximum improved removal rate of 23.7% at 100 kPa sparging pressure. In mechanism analysis, the recorded changes in total pore pressure and average liquid saturation illustrated the pressure drop and discrete drainage phenomena, confirming the pressure gradient and air sub-channels formed in low-permeability soil. Finally, contaminant mass transfer characteristic was quantitatively analyzed using the lumped parameter model, in which the mass transfer coefficient and the air channel influencing fraction were enhanced almost fourfold and fivefold respectively by introducing the proposed approach. Compared to the conventional approach, the improved remediation efficiency using the proposed approach tackled the in-situ remediation challenge on low-permeability soil, and further expanded the application scope of air sparging technology on VOC contaminated site.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have