Abstract
This work describes the investigation of carbon nanotube-polymeric nanocomposites and other multiple-tip emitters based on a new reflectron-type time-of-flight mass spectrometer specialized for field emission (FE) tasks, as well as a multichannel acquisition system and on-line processing of the current–voltage characteristics and other parameters of flat multipoint field emitters. Evidence concerning the transfer of large molecular clusters of the emitter material to the opposite electrode for as-prepared samples is presented. It is determined that a vacuum discharge phenomenon in the interelectrode gap is accompanied by strong emission of acetylene. It is also shown that the main volatile product in the FE experiment is hydrogen. The CO and CO2 ratio during the FE experiment is not constant, and hence, arises from different processes. These oxygen-containing volatile products in the spectrum are observed for as-prepared samples at the vacuum discharge, and also arise after long-term heating of the anode surface by an electron current.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.