Abstract

The dynamical scenario is considered for N=1 SQCD, with N_c colors and N_c<N_F<3N_c flavors with small but nonzero current quark masses m_Q\neq 0, in which quarks form the diquark-condensate phase. This means that colorless chiral quark pairs condense coherently in the vacuum, <{\bar Q}Q>\neq 0, while quarks alone don't condense, <Q>=<\bar Q>=0, so that the color is confined. Such condensation of quarks results in formation of dynamical constituent masses \mu_C \gg m_Q of quarks and appearance of light "pions" (similarly to QCD). The mass spectrum of SQCD in this phase is described and comparison with the Seiberg dual description is performed. It is shown that the direct and dual theories are different (except, possibly, for the perturbative strictly superconformal regime).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.