Abstract

Research in environmental mass spectrometry focuses on two broad areas: development of new methods for a wide range of pollutants; and using existing methods to understand the fate of pollutants in nature. This paper will present examples of both types of research. In some environmental settings it is important to have rapid analytical turnaround, which suggests that samples should be analyzed in the field rather than in a remote laboratory. Thus, there has been considerable interest in “fieldable” mass spectrometers. Volatile and water soluble analytes can be introduced into a mass spectrometer by passing the water sample over a semi-permeable membrane. The analytes of interest pass through the membrane, but the water does not. This method may be useful in situations that require a continuous readout of concentration. Like mass spectrometrists everywhere, environmental scientists have explored the many facets of liquid chromatographic mass spectrometry. Work in our laboratory has centered on continuous flow fast atom bombardment (CF-FAB) as the LC MS interface. In addition, flow injection analysis is possible using CF-FAB. By avoiding chromatographic separation, the throughput of the analytical system is increased. Frequently, tandem mass spectrometry is necessary to unscramble the chemical signals produced by this technique. Electron capture negative ionization mass spectrometry can achieve sensitivities of a few attomoles for selected compounds; furthermore, the technique can be remarkably specific. These features make it ideal for the analysis of highly chlorinated environmental contaminants such as chlorinated dioxins. Such an application will be presented in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.