Abstract

Positive ions and radicals in C2F6 and CHF3 high density discharges were measured using a direct-line-of-sight mass spectrometer. The ion energy distributions of the dominant ions were measured as a function of process conditions. Appearance potential mass spectrometry was performed to measure trends of the radical densities. For C2F6 plasmas CF3 and CF3+are the most abundant neutral and ionic species, respectively. CF3 is the most abundant neutral species for a CHF3 plasma, whereas CHF2+ and CF+ are the most abundant ionic species at 600–1000 and 1400 W, respectively. Erosion of the quartz coupling window is an important contaminant source for our inductively coupled plasma system. For comparison, downstream mass spectrometry was also applied using a closed ion source system since this approach is of interest for real-time monitoring and control. Endpoint detection for Si and SiO2 film etching in a CHF3 plasma was investigated using the downstream mass spectrometer system and compared with data obtained simultaneously using the direct-line-of-sight mass spectrometer and optical emission spectroscopy. It was found that the downstream mass spectrometer system can be used for endpoint detection during SiO2 over Si selective etching. The signal changes of different species measured by these techniques for different SiO2 and Si etching processes as a function of time are reported and compared.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.