Abstract
Coronavirus disease 2019 (COVID-19) has emerged as a global health threat and has rapidly spread worldwide. Significant changes in the lipid profile before and after COVID-19 confirmed the significance of lipid metabolism in regulating the response to viral infection. Therefore, understanding the role of lipid metabolism may facilitate the development of new therapeutics for COVID-19. Owing to their high sensitivity and accuracy, mass spectrometry (MS)-based methods are widely used for rapidly identifying and quantifying of thousands of lipid species present in a small amount of sample. To enhance the capabilities of MS for the qualitative and quantitative analysis of lipids, different platforms have been combined to cover a wide range of lipidomes with high sensitivity, specificity, and accuracy. Currently, MS-based technologies are being established as efficient methods for discovering potential diagnostic biomarkers for COVID-19 and related diseases. As the lipidome of the host cell is drastically affected by the viral replication process, investigating lipid profile alterations in patients with COVID-19 and targeting lipid metabolism pathways are considered to be crucial steps in host-directed drug targeting to develop better therapeutic strategies. This review summarizes various MS-based strategies that have been developed for lipidomic analyzes and biomarker discoveries to combat COVID-19 by integrating various other potential approaches using different human samples. Furthermore, this review discusses the challenges in using MS technologies and future perspectives in terms of drug discovery and diagnosis of COVID-19.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have