Abstract

Deamidation of asparagine and glutamine alters protein structures and affects the chemical and biological properties of proteins. Protein deamidation has been demonstrated to be associated with protein folding, enzymatic activity, and degradation, as well as aging, cancer, and neurodegenerative diseases. To gain a better understanding on the biological roles of protein deamidation in aging and diseases, mass spectrometry (MS) has been employed in the identification of deamidated protein species and comprehensive characterization of deamidation sites. Three main MS approaches, top-down, middle-down, and bottom-up have been applied in the study of protein deamidation with high sensitivity, throughput, and accuracy. In this review, we discuss the application of top-down and middle-down MS in the study of protein deamidation, including sample preparation methods, separation strategies, MS and MS/MS techniques and data analysis. The advantages and drawbacks of these two approaches are also discussed and compared with those of the bottom-up method. The development of top-down and middle-down MS methods provides new strategies for protein deamidation analysis and gives new insights into the biological significance of protein deamidation in diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call