Abstract
Neutron Compton scattering experiments on crystalline lithium hydride and deuteride are presented and compared with existing experimental data and first-principles predictions. With currently available instrumentation, these measurements demonstrate sufficient mass selectivity for studies of nuclear-momentum distributions of protons, deuterons, and lithium using forward and backscattering geometries. In both materials, spectral discrimination of lithium-recoil features is highest in backscattering geometry, although mass isolation is also possible in the forward-scattering direction. These results evince the possibility of performing simultaneous mass-selective neutron spectroscopic studies for nuclei with $m>4$ amu. We also provide an in-depth analysis and assessment of departures from the harmonic and impulse approximations as described by the celebrated Sears expansion of the dynamic structure factor, as well as how these can manifest themselves in the experimental data. We close by outlining the potential of our experimental strategy for mass-selective spectroscopic studies of materials containing protons and other light nuclides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.