Abstract

The factors governing the mass resolution for 0.05–0.5 A MeV recoil nuclei have been investigated for detector telescopes in which carbon-foil time zero detectors and ion-implanted silicon detectors are used to determine the time of flight and energy respectively. Experimentally determined second moments of the mass distribution have been compared with theoretical estimates based on literature data. The experimental mass resolution is in reasonably good absolute agreement with theoretical estimates. For low energy (< 0.3 A MeV) particles the mass resolution is dominated by the contribution from the silicon detector and thus largely independent of timed flight length. In fact for detection of very low energy (0.1 A MeV) recoil nuclei timed flight lengths of less than 0.22 m are sufficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.