Abstract
Future high energy physics experiments at CERN's Large Hadron Collider will use high precision silicon detectors for tracking purposes. The hadronic component of the radiation received threatens the lifetime of these detectors and it is vital to choose the silicon starting material to maximise the performance and lifetime. Ion-implanted silicon detectors with various initial resistivities and germanium concentrations have been irradiated with high energy protons up to a fluence of 10/sup 14/ cm/sup -2/. The change in leakage current and full depletion voltage have been studied both as a function of fluence and of time after irradiation. Measurements were made up to 100 days post-irradiation at room temperature and then using heating techniques to accelerate processes up to the equivalent of over 10 years at room temperature. The leakage-current damage constant is shown to be independent of the starting material while the conduction type inversion point and the long-term annealing of the depletion voltage are sensitive to the initial resistivity and impurity concentrations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.