Abstract
Using near-infrared speckle interferometry we have obtained resolved JHK-photometry for the components of 58 young binary systems. From these measurements, combined with other data taken from literature, we derive masses and particularly mass ratios of the components. We use the J-magnitude as an indicator for the stellar luminosity and assign the optical spectral type of the system to the primary. On the assumption that the components within a binary are coeval we can then also place the secondaries into the HRD and derive masses and mass ratios for both components by comparison with different sets of current theoretical pre-main sequence evolutionary tracks. The resulting distribution of mass ratios is comparatively flat for , but depends on assumed evolutionary tracks. The mass ratio is neither correlated with the primary's mass or the components' separation. These findings are in line with the assumption that for most multiple systems in T associations the components' masses are principally determined by fragmentation during formation and not by the following accretion processes. Only very few unusually red objects were newly found among the detected companions.This finding shows that the observed overabundance of binaries in the Taurus-Auriga association compared to nearby main sequence stars should be real and not the outcome of observational biases related to infrared observing.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have