Abstract

Low-dimensional semiconductor-based field-effect transistor (FET) biosensors are promising for label-free detection of biotargets while facing challenges in mass fabrication of devices and reliable reading of small signals. Here, we construct a reliable technology for mass production of semiconducting carbon nanotube (CNT) film and FET biosensors. High-uniformity randomly oriented CNT films were prepared through an improved immersion coating technique, and then, CNT FETs were fabricated with coefficient of performance variations within 6% on 4-in. wafers (within 9% interwafer) based on an industrial standard-level process. The CNT FET-based ion sensors demonstrated threshold voltage standard deviations within 5.1 mV at each ion concentration, enabling direct reading of the concentration information based on the drain current. By integrating bioprobes, we achieved detection of biosignals as low as 100 aM through a plug-and-play portable detection system. The reliable technology will contribute to commercial applications of CNT FET biosensors, especially in point-of-care tests.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.