Abstract

Tumor-derived exosomal miRNAs may have important functions in the onset and progression of cancers and are potential biomarkers for early diagnosis and prognosis monitoring. Yet, simple, sensitive, and label-free detection of exosomal miRNAs remains challenging. Herein, an ultrasensitive, label-free, and stable field-effect transistor (FET) biosensor based on a polymer-sorted high-purity semiconducting carbon nanotube (CNT) film is reported to detect exosomal miRNA. Different from conventional CNT FETs, the CNT FET biosensors employed a floating gate structure using an ultrathin Y2O3 as an insulating layer, and assembled Au nanoparticles (AuNPs) on Y2O3 as linkers to anchor probe molecules. A thiolated oligonucleotide probe was immobilized on the AuNP surface of the sensing area, after which miRNA21 was detectable by monitoring the current change before and after hybridization between the immobilized DNA probe and target miRNA. This method achieved both high sensitivity (LOD: 0.87 aM) and high specificity. Furthermore, the FET biosensor was employed to test clinical plasma samples, showing significant differences between healthy people and breast cancer patients. The CNT FET biosensor shows the potential applications in the clinical diagnosis of breast cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.