Abstract

Forcespinning® technology was used to study large-scale production of conductive nonwoven nanofiber composite mats. Carboxyl functionalized multi-walled carbon nanotubes (CNT) were used to reinforce poly(methyl methacrylate) (PMMA). Composite nanofibers were developed with average diameters ranging from 370nm to 800nm depending on the selected processing parameters. It was found that the most influential processing parameters were viscosity of the solution and angular velocity used in the system. SEM revealed polymer wetted CNT aligned and oriented along the axis of the nanofibers. The mechanical and electrical properties of the composites were improved, compared to those of the pristine PMMA nanofibers. A 10 orders of magnitude drop in electrical resistivity and an electromagnetic shielding effectiveness of more than 20db were obtained. Raman and Fourier transform infrared spectroscopy analyses indicated changes on the asymmetry of the polar bonds due to interactions between the CNTs and the matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.