Abstract

Mass mortality events occur in natural and cultured communities of bivalve molluscs. The Pacific oyster, Crassostrea gigas, is a dominant species in many intertidal locations as well as an important aquacultured bivalve species, and for the last 50 years, adult oysters have suffered frequent and extreme mass mortality events during summer months. To investigate the molecular changes that precede these mortality events, we employed a novel nonlethal sampling approach to collect haemolymph samples from individual oysters during the period that preceded a mortality event. Microarray-based gene expression screening of the collected haemolymph was used to identify a mortality gene expression signature that distinguished oysters that survived the mortality event from those individuals that died during the event. The signature was cross-validated by comparing two separate episodes of mortality. Here, we report that near-mortality oysters can be distinguished from longer-lived oysters by the elevated expression of genes associated with cell death, lysosomal proteolysis, and cellular assembly and organization. These results show the potential utility of nonlethal sampling approaches for investigating the environmental causes of mortality in natural populations in the field, and for predicting when such events could occur and which individuals will be affected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.