Abstract

Training deep segmentation models for medical images often requires a large amount of labeled data. To tackle this issue, semi-supervised segmentation has been employed to produce satisfactory delineation results with affordable labeling cost. However, traditional semi-supervised segmentation methods fail to exploit unpaired multi-modal data, which are widely adopted in today's clinical routine. In this paper, we address this point by proposing Modality-collAborative Semi-Supervised segmentation (i.e., MASS), which utilizes the modality-independent knowledge learned from unpaired CT and MRI scans. To exploit such knowledge, MASS uses cross-modal consistency to regularize deep segmentation models in aspects of both semantic and anatomical spaces, from which MASS learns intra- and inter-modal correspondences to warp atlases' labels for making predictions. For better capturing inter-modal correspondence, from a perspective of feature alignment, we propose a contrastive similarity loss to regularize the latent space of both modalities in order to learn generalized and robust modality-independent representations. Compared to semi-supervised and multi-modal segmentation counterparts, the proposed MASS brings nearly 6% improvements under extremely limited supervision.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.