Abstract

Electrical activity of a population of visually responsive cells located in the vicinity of a single functionally defined neuron was recorded in the area 18 of the cat's cerebral cortex with a single tungsten microelectrode. The correlograms calculated from the mass activity record showed an existence of a rhythmic neuronal firing with an average interval near to 3 ms. When the system was activated by a visual stimulus, a line at an optimal angle moving in an optimal direction, the rhythmic activity became regular, acquiring an oscillatory sinusoidal character. This rhythmic pattern cannot be easily recognized when the activity of a single neuron is recorded. It is possible that such rhythmic activity involving large numbers of neurons contributes to the recognition of the velocity and position of the visual stimulus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call