Abstract

In order to study the concentration and distribution characteristics of water-soluble inorganic ions in aerosol particles of the Beibei district of Chongqing, aerosol samples were collected with an Andersen cascade impactor between March 2014 and February 2015. Water-soluble inorganic ions, including Na+, NH4+, K+, Mg2+, Ca2+, F-, Cl-, NO3-, and SO42- were determined for different particle sizes (9.00, 5.80, 4.70, 3.30, 2.10, 1.10, 0.65, and 0.43 μm) using the ion chromatography method. Results showed that SO42-, NH4+, NO3-, Cl-, Na+, and K+ were mainly distributed in fine particles, while Mg2+, Ca2+, and F- were mainly present in coarse particles. SNA (SO42-, NH4+, and NO3-) exhibited clear unimodal distribution, with peaks in the droplet mode of 0.65-1.10 μm, mainly present in the form of (NH4)2SO4 and NH4NO3 in fine particles. The formation of SO42- is mainly attributed to in-cloud processes and partly to oxidation of SO2. Na+, Cl-, and Mg2+ exhibited bimodal distribution in coarse and fine particles; K+ was a single peak distribution in the range of 0.43-1.10 μm, while peaks of F- and Ca2+ concentrations were in coarse particles. Average annual concentrations of total water-soluble ions in PM2.1 and PM9.0 were (32.68±15.28) μg·m-3and (48.01±19.66) μg·m-3 over the observation period. Seasonal variations of PM2.1 and PM9.0concentrations decreased in the order of winter > spring > summer > autumn. This was the same for most ions, but a small number of ions (F-, Mg2+ and Ca2+) had a different pattern in the spring, summer, and winter. The SNA were the major components of water-soluble ions in PM2.1, and Ca2+ was the major component of water-soluble ions in PM9.0 besides SNA. The concentration of cations was significantly higher than that of anions' in PM2.1 and PM9.0, with a certain correlation between different ions. Emissions from motor vehicle exhaust, combustion processes, soil sources, and fugitive dust were the major sources of water-soluble ions in this area. The effect of air temperature on secondary ions is significant (P<0.05), but relative humidity and wind speed have no significant effect (P>0.05).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call