Abstract

The daily concentrations of 15 polycyclic aromatic hydrocarbons (PAHs) in PM1 aerosol samples, including 7 carcinogenic PAHs, were determined in six urban/rural areas in the Czech Republic in winter seasons between 2013 and 2017. The PM1 aerosol was collected on quartz fibre filters using high-volume samplers for 24 h and PAHs were analysed by GC-MS. The highest concentrations of PAHs were found in the industrial city Ostrava (60.8 ng m−3), which is one of the most polluted areas in the Czech Republic, while the lowest concentrations were obtained in the small town Čelákovice (11.7 ng m−3) and in the background rural area Košetice (12.3 ng m−3). Carcinogenic PAHs formed 43.9%–57.8% of total analysed PAHs.The toxic equivalence factors for individual PAHs adopted from literature and two unit risks (Cal-EPA and WHO) were used for the evaluation of carcinogenic risk of PAHs exposure. The inhalation cancer risk models assume a lifetime exposure (70 years), whereas our measurement was realized for a relatively short duration in winters where concentrations of PAHs are usually high. The average of PAHs concentrations will be lower for the whole year resulting in lower lung cancer risk values. The calculated lifetime lung cancer risk of PAHs exposure for the measured winter periods suggested 1545 cases per 1 million people in Ostrava (industrial area), 192–456 cases per 1 million people in other four investigated cities/towns and 182 cases per 1 million people in Košetice (rural area). The calculated lifetime lung cancer risk values are related only to ambient concentrations of PAHs in atmospheric aerosols. Nevertheless, other factors can influence and increase the lung cancer risk, e.g., occupation, smoking, indoor emissions of coal/wood combustion in stoves or genetic factors of individuals. Our results can also be underestimated due to the determination of PAHs only in PM1 aerosol.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.