Abstract
We consider the mass concentration phenomenon for the $L^2$-critical nonlinear Schrodinger equations of higher orders. We show that any solution $u$ to $iu_{t} + (-\Delta)^{\frac\alpha 2} u =\pm |u|^\frac{2\alpha}{d}u$, $u(0,\cdot)\in L^2$ for $\alpha >2$, which blows up in a finite time, satisfies a mass concentration phenomenon near the blow-up time. We verify that as $\alpha$ increases, the size of region capturing a mass concentration gets wider due to the stronger dispersive effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.