Abstract

Oligonucleotide microarrays, also called "DNA chips," are currently made by a light-directed chemistry that requires a large number of photolithographic masks for each chip. Here we describe a maskless array synthesizer (MAS) that replaces the chrome masks with virtual masks generated on a computer, which are relayed to a digital micromirror array. A 1:1 reflective imaging system forms an ultraviolet image of the virtual mask on the active surface of the glass substrate, which is mounted in a flow cell reaction chamber connected to a DNA synthesizer. Programmed chemical coupling cycles follow light exposure, and these steps are repeated with different virtual masks to grow desired oligonucleotides in a selected pattern. This instrument has been used to synthesize oligonucleotide microarrays containing more than 76,000 features measuring 16 microm 2. The oligonucleotides were synthesized at high repetitive yield and, after hybridization, could readily discriminate single-base pair mismatches. The MAS is adaptable to the fabrication of DNA chips containing probes for thousands of genes, as well as any other solid-phase combinatorial chemistry to be performed in high-density microarrays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.