Abstract

Identification of factors involved in the initiation, amplification, and perpetuation of the chronic immune response and the identification of markers for the characterization of patient subgroups remain critical objectives for ongoing research in inflammatory bowel disease (IBD). The Human Genome Project and the development of the expressed sequence tag (EST) clone collection and database have made possible a new revolution in gene expression analysis. Instead of measuring one or a few genes, parallel DNA microarrays are capable of simultaneously measuring expression of thousands of genes, providing a glimpse into the logic and functional grouping of gene programs encoded by our genome. Applied to clinical specimens from affected and normal individuals, this methodology has the potential to provide a new level of information about disease pathogenesis not previously possible. Two dominant platforms for the construction of high-density microarrays have emerged: cDNA arrays and GeneChips. The first involves robotic spotting of DNA molecules, often derived from EST clone collections, onto a suitable solid phase matrix such as a glass slide. The second involves direct in situ synthesis of sets of gene-specific oligonucleotides on a silicon wafer by an eloquent derivative of the photolithography process. Both cDNA and oligonucleotide arrays are interrogated by hybridization with a fluorescent-labeled cDNA or cRNA representation of the original tissue mRNA. This enables measurement of the expression levels for thousands of mucosal genes in a single experiment. These technologies have recently become less expensive and more widely accessible to all researchers. This review details the principles and methods behind DNA array technology, data analysis and mining, and potential application to research and treatment of IBD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.