Abstract
The process of brain tumour segmentation entails locating the tumour precisely in images. Magnetic Resonance Imaging (MRI) is typically used by doctors to find any brain tumours or tissue abnormalities. With the use of region-based Convolutional Neural Network (R-CNN) masks, Grad-CAM and transfer learning, this work offers an effective method for the detection of brain tumours. Helping doctors make extremely accurate diagnoses is the goal. A transfer learning-based model has been suggested that offers high sensitivity and accuracy scores for brain tumour detection when segmentation is done using R-CNN masks. To train the model, the Inception V3, VGG-16, and ResNet-50 architectures were utilised. The Brain MRI Images for Brain Tumour Detection dataset was utilised to develop this method. This work's performance is evaluated and reported in terms of recall, specificity, sensitivity, accuracy, precision, and F1 score. A thorough analysis has been done comparing the proposed model operating with three distinct architectures: VGG-16, Inception V3, and Resnet-50. Comparing the proposed model, which was influenced by the VGG-16, to related works also revealed its performance. Achieving high sensitivity and accuracy percentages was the main goal. Using this approach, an accuracy and sensitivity of around 99% were obtained, which was much greater than current efforts.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.