Abstract

In subduction zones, melting and dehydration of the subducted slab introduce material into the mantle wedge and modify its chemical and isotopic composition. As a consequence, island arc lavas differ significantly from mid-ocean ridge basalts and ocean island basalts. In some arcs, the composition of lavas is strongly influenced by the sedimentary material introduced with the slab; in others, magma composition is mainly affected by aqueous fluids released by the slab. The Lesser Antilles arc is known for its extreme continental-crust-like signature but for some Lesser Antilles lavas subducted sediments are barely involved and enrichment in fluid-mobile elements (Ba, U, Sr, Pb, etc.) is the dominant feature. Here we evaluate whether La/Sm is a quantitative proxy of sediment involvement in volcanic arcs, and we relate dehydration and melting processes to the temperature and pressure conditions of the slab. We use Martinique as a case study because in this island both dehydration and sediment melting fingerprints coexist. We measured major and trace elements for about 130 age-constrained samples, carefully chosen to cover all volcanic phases of Martinique (25 Ma to present). Using these results we demonstrate that: (1) weathering does not modify the La/Sm ratio; (2) fractional crystallization of amphibole and/or garnet does not increase La/Sm by more than 20%; (3) rare earth element transfer from wall-rock to magma during fractionation is not significant; (4) melting of the mantle source increases La/Sm by only about 20%. As a consequence, we show that the proportion of slab sediment incorporated in the mantle wedge controls the La/Sm ratio of the source. The observed correlations between La/Sm and Nd and Hf isotopic compositions indicate that the effect of sediment addition is the overwhelming factor: La/Sm is a good proxy for slab sediment proportion in Martinique. We observe a geographical gradient between slab dehydration and sediment melting on the island...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call