Abstract

Marsupial neonates are born with immature immune systems, making them vulnerable to pathogens. While neonates receive maternal protection, they can also independently combat pathogens, though the mechanisms remain unknown. Using the sugar glider (Petaurus breviceps) as a model, we investigated immunological defense strategies of marsupial neonates. Cathelicidins, a family of antimicrobial peptides expanded in the genomes of marsupials, are highly expressed in developing neutrophils. Sugar glider cathelicidins reside in two genomic clusters and their coordinated expression is achieved by enhancer sharing within clusters and long-range physical interactions between clusters. These cathelicidins modulate immune responses and have potent antimicrobial effects, sufficient to provide protection in a mouse model of sepsis. Lastly, cathelicidins have a complex evolutionary history, where marsupials and monotremes are the only tetrapods that retained two cathelicidin clusters. Thus, cathelicidins are critical mediators of marsupial immunity, and their evolution reflects the life history-specific immunological needs of these animals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.