Abstract

Mars Sample Return (MSR) architecture and mission engineering, led by Boeing for JPL, is presented. The study sought credible data to support planning a 2011 mission to return 500g of scientifically selected samples. Phase 1 compared diverse architecture options to accomplish the mission. 17 theme-based architectures were conceived, quantified, measured, and scored. Two primary and three secondary architectures were recommended. Phase 2 developed engineering detail for a simple architecture specified by JPL: dual mission to two landing sites; short-range, radioisotope-powered sampling rovers; Mars orbit rendezvous; and electric return propulsion with Shuttle rendezvous. The design comprises nine system elements. Solutions for sample handling and breaking the back contamination chain are detailed. Total mission duration is five years. Technology tailoring, rather than technology creation, is required. Mission development cost, including margins and wraps, is $2.8B. The study concluded that many schemes can feasibly accomplish Mars sample return, depending on program objectives adopted.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.