Abstract

The simplified general perturbations 4 (SGP4) orbital propagation model is one of the most widely used methods for rapidly and reliably predicting the positions and velocities of objects orbiting Earth. Over time, SGP models have undergone refinement to enhance their efficiency and accuracy. Nevertheless, they still do not match the precision offered by high-precision numerical propagators, which can predict the positions and velocities of space objects in low-Earth orbit with significantly smaller errors.In this study, we introduce a novel differentiable version of SGP4, named ∂SGP4. By porting the source code of SGP4 into a differentiable program based on PyTorch, we unlock a whole new class of techniques enabled by differentiable orbit propagation, including spacecraft orbit determination, state conversion, covariance similarity transformation, state transition matrix computation, and covariance propagation. Besides differentiability, our ∂SGP4 supports parallel propagation of a batch of two-line elements (TLEs) in a single execution and it can harness modern hardware accelerators like GPUs or XLA devices (e.g. TPUs) thanks to running on the PyTorch backend.Furthermore, the design of ∂SGP4 makes it possible to use it as a differentiable component in larger machine learning (ML) pipelines, where the propagator can be an element of a larger neural network that is trained or fine-tuned with data. Consequently, we propose a novel orbital propagation paradigm, ML-∂SGP4. In this paradigm, the orbital propagator is enhanced with neural networks attached to its input and output. Through gradient-based optimization, the parameters of this combined model can be iteratively refined to achieve precision surpassing that of SGP4. Fundamentally, the neural networks function as identity operators when the propagator adheres to its default behavior as defined by SGP4. However, owing to the differentiability ingrained within ∂SGP4, the model can be fine-tuned with ephemeris data to learn corrections to both inputs and outputs of SGP4. This augmentation enhances precision while maintaining the same computational speed of ∂SGP4 at inference time. This paradigm empowers satellite operators and researchers, equipping them with the ability to train the model using their specific ephemeris or high-precision numerical propagation data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.