Abstract

The objective of this study is to introduce an abstraction procedure that applies to a general class of dynamical systems, that is to discrete-time stochastic hybrid systems (dt-SHS). The procedure abstracts the original dt-SHS into a Markov set-chain (MSC) in two steps. First, a Markov chain (MC) is obtained by partitioning the hybrid state space, according to a controllable parameter, into non-overlapping domains and computing transition probabilities for these domains according to the dynamics of the dt-SHS. Second, explicit error bounds for the abstraction that depend on the above parameter are derived, and are associated to the computed transition probabilities of the MC, thus obtaining a MSC. We show that one can arbitrarily increase the accuracy of the abstraction by tuning the controllable parameter, albeit at an increase of the cardinality of the MSC. Resorting to a number of results from the MSC literature allows the analysis of the dynamics of the original dt-SHS. In the present work, the asymptotic behavior of the dt-SHS dynamics is assessed within the abstracted framework.KeywordsModel CheckHybrid AutomatonStochastic KernelSteady State ComputationProbabilistic ReachabilityThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.