Abstract

This article deals with the limiting average variance criterion for discrete-time Markov decision processes in Borel spaces. The costs may have neither upper nor lower bounds. We propose another set of conditions under which we prove the existence of a variance minimal policy in the class of average expected cost optimal stationary policies. Our conditions are weaker than those in the previous literature. Moreover, some sufficient conditions for the existence of a variance minimal policy are imposed on the primitive data of the model. In particular, the stochastic monotonicity condition in this paper has been first used to study the limiting average variance criterion. Also, the optimality inequality approach provided here is different from the “optimality equation approach” widely used in the previous literature. Finally, we use a controlled queueing system to illustrate our results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.