Abstract

In this paper we study discrete-time Markov decision processes with Borel state and action spaces. The criterion is to minimize average expected costs, and the costs may have neither upper nor lower bounds. We first provide two average optimality inequalities of opposing directions and give conditions for the existence of solutions to them. Then, using the two inequalities, we ensure the existence of an average optimal (deterministic) stationary policy under additional continuity-compactness assumptions. Our conditions are slightly weaker than those in the previous literature. Also, some new sufficient conditions for the existence of an average optimal stationary policy are imposed on the primitive data of the model. Moreover, our approach is slightly different from the well-known ‘optimality inequality approach’ widely used in Markov decision processes. Finally, we illustrate our results in two examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.