Abstract
The Hierarchical SEGmentation (HSEG) algorithm, which is a combination of hierarchical step-wise optimization and spectral clustering, has given good performances for hyperspectral image analysis. This technique produces at its output a hierarchical set of image segmentations. The automated selection of a single segmentation level is often necessary. We propose and investigate the use of automatically selected markers for this purpose. In this paper, a novel Marker-based HSEG (M-HSEG) method for spectral-spatial classification of hyperspectral images is proposed. First, a map of markers is constructed using classification results. Then, a novel constrained M-HSEG algorithm is applied. The experimental results show that the proposed approach yields accurate segmentation and classification maps, and thus is attractive for hyperspectral image analysis.
Submitted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have