Abstract

A global navigation satellite system (GNSS)-based multistatic radar is explored for target localization and kinematic state estimation. Since any point on the earth can be illuminated by a minimum of four satellites of each GNSS constellation at any time, GNSS-based passive radars can be inherently considered multistatic radars. In this paper, a method for jointly estimating the target position and velocity by utilizing both the time delays and Doppler shifts has been proposed, and an analytical accuracy analysis is also provided. In the new method, the bistatic range and Doppler for each path are firstly estimated by the range-Doppler (RD) method, and then by using the bistatic ranges and Doppler shifts. The least squares method is applied to estimate the target position and velocity simultaneously. Compared with the precedent target localization and velocity estimation method, the proposed method achieves a better estimation result with simple procedures. Simulation results are provided to validate the effectiveness of the proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call