Abstract
In marine ecosystems, both living and non-living organisms depend on “good” water quality. It depends on a number of factors, and one of the most important is the quality of the water. The water quality index (WQI) model is widely used to assess water quality, but existing models have uncertainty issues. To address this, the authors introduced two new WQI models: the weight based weighted quadratic mean (WQM) and unweighted based root mean squared (RMS) models. These models were used to assess water quality in the Bay of Bengal, using seven water quality indicators including salinity (SAL), temperature (TEMP), pH, transparency (TRAN), dissolved oxygen (DOX), total oxidized nitrogen (TON), and molybdate reactive phosphorus (MRP). Both models ranked water quality between “good” and “fair” categories, with no significant difference between the weighted and unweighted models’ results. The models showed considerable variation in the computed WQI scores, ranging from 68 to 88 with an average of 75 for WQM and 70 to 76 with an average of 72 for RMS. The models did not have any issues with sub-index or aggregation functions, and both had a high level of sensitivity (R2 = 1) in terms of the spatio-temporal resolution of waterbodies. The study demonstrated that both WQI approaches effectively assessed marine waters, reducing uncertainty and improving the accuracy of the WQI score.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.